Name:			

Class:	Date:
Ciass.	Date.

Unit 5 Quiz 2 Thermochemistry

Multiple Choice

Identify the choice that best completes the statement or answers the question.

X 1. Given the data in the table below, calculate ΔH°rxn for the reaction

$$3Cl_{2(g)} + PH_{3(g)} \rightarrow PCl_{3(g)} + 3HCl_{(g)}$$

Compound	ΔH° _f (kJ/mol)
PCl ₃ (g)	-288.07
HCl (g)	-92.30
PH ₃ (g)	5.40

- a. -385 77 kJ
- b. 385,77 kJ
- c. -570.37 kJ
- d. 570.37 kJ
- e. missing necessary information
- 2. The reaction $A + 2B \rightarrow C$ has the following proposed mechanism:

Step 1:
$$A + B \leftrightarrow D$$
 (fast, equilibrium)
Step 2: $D + A \rightarrow E$ (slow)
Step 3: $E + B \rightarrow C + A$ (fast)

If Step 2 is the rate-determining step, then the rate of formation of C should equal

- a. k[A]
- b. k[A]²[B]
- c. k[A]2[B]2
- k[A][B]
- e. k[A][B]2

- 3. When 2.00 grams of N_aC₂H₃O₂ is dissolved in 50.0 mL of water, the temperature decreases by 3.90 °C. What is the enthalpy of solution, ΔH_{soln} in kJ/mol?
 - 44.6 kJ
 - b. -44.6 kJ
 - c. 4.29 x 10⁴ kJ
 - d. 42.9 kJ
 - e. -42.9 kJ

 $\stackrel{\checkmark}{\rightarrow}$ 4. The value of ΔH° for the reaction below is -125 kJ. How much heat is released when 60.0 g of K2O2 reacts with excess water?

$$2K_2O_{2(s)} + 2H_2O_{(l)} \rightarrow 4KOH_{(s)} + O_{2(g)}$$

- a. 68.0 kJ
- b. 34.0 kJ
- c. 3.75 kJ
- d. 3750 kJ
- e. none of the above

- 5. Calculate the work (kJ) done during a reaction in which the internal volume contracts from 107 L to 25 L when the outside pressure is 2204 mmHg.
 - a. 2.4 x 10⁴ kJ
 - b. 2.4 x 10² kJ
 - c. -24 kJ
 - d. 24 kJ
 - e. -2.4 x 10² kJ
- 6. Two substances of equal mass lose the same amount of heat. Which substance will experience the smallest temperature change?
 - The substance with the highest heat capacity.
 - b. The substance with the lowest heat capacity.
 - c. Both substances will have the same temperature change.
 - d. You must know the identity of the substances to answer this question.
 - You need to know the initial temperatures of the substances to answer this question.

- 7. A sample of iron absorbs 8.1 kJ of heat. This results in the temperature of the sample increasing from 13.6 °C to 42.1°C. If the specific heat of iron is 0.450 J/g-K, what is the mass (in grams) of the sample?
 - 1.58 x 10⁻³ g
 - b. 104 g
 - c. 1.04 x 105 g
 - d. 0.630 g
 - e. 630 g
 - 8. Which of the following has the least negative electrostatic potential energy (lattice energy)?

 - b. NaCl
 - c. KI
 - d. SrO
 - e. MgBr

- → 9. 50.0 mL of 0.100 M AgNO₃ and 50.0 mL of 0.100 M NaCl arc mixed in a coffe cup calorimeter. The two solutions are initially 22.0 °C and the final temperature after mixing is 23.7 °C. Calculate the ΔHr in kJ/mol AgCl. The density of the solutions is 1.0 g/mL and the specific heat of the solutions is 4.184 J/g°C.
 - a. 710 kJ
 - b. 0.710 kJ
 - c. 142 kJ
 - d. 356 kJ
 - e. none are correct.

→ 10. Consider the following thermochemical equation:

NaOH (aq) + HCl (aq)
$$\rightarrow$$
 NaCl (aq) + H₂O (l) $\Delta H_{rxn} = -110 \text{ kJ}$

Calculate the heat released when 300.0 mL of 0.0750 M NaOH is mixed with 300.0 mL of 0.100 M HCl.

- 110 kJ a.
- b. 0.825 kJ
- c. 11.0 kJ
- d. 2.48 kJ
- e. none of the above is correct

- 11. A sample of water has a mass of 16.55 grams and is 20.0 °C. If 1.2 kJ of energy is removed from the water, then the water will be
 - a. still a liquid.
 - b. decomposed.
 - c. frozen solid.
 - d. completely vaporized.
 - e. boiling
- 12. The internal energy of a system can be increased by . .
 - (a) transferring heat from the surroundings to the system
 - (b) transferring heat from the system to the surroundings
 - (c) system doing work on the surroundings
 - (d) surroundings doing work on the system
 - a. (a) only
 - b. (a) and (c)
 - c. (a) and (d)
 - d. (b) and (c)
 - e. (c) only

13.

Why is the reaction represented in the diagram above considered to be exothermic?

- a. Because energy difference A and energy difference C are about the same
- b. Because energy difference B is greater than energy difference C plus energy difference A
- c. Because energy difference B is greater than energy difference C
- d. Because energy difference A is greater than energy difference C
- e. Because energy difference B is greater than energy difference A
- 14. Calculate the value of ΔE in joules for a system that loses 123 J of heat and has 151 J of work performed on it by the surroundings.
 - a. 28 J
 - b. 274 J
 - c. -28 J
 - d. -274 J
 - e. more information is needed
- \rightarrow 15. Use the following thermochemical equations to calculate the ΔH_f^o of CuO.

$$Cu_2O(s) + \frac{1}{2}O_2(g) \rightarrow 2CuO(s)$$
 $\Delta H^\circ = -154 \text{ kJ}$
 $Cu_2O(s) \rightarrow Cu(s) + CuO(s)$ $\Delta H^\circ = -13 \text{ kJ}$

- a. -141 kJ
- b. -182 kJ
- c. +182 kJ
- d. -167 kJ
- e. +167 kJ